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Abstract—In this article, we address the problem of distributed
detection of a noncooperative (unknown emitted signal) target
with a wireless sensor network. When the target is present, sen-
sors observe a (unknown) deterministic signal with attenuation
depending on the unknown distance between the sensor and the
target, multiplicative fading, and additive Gaussian noise. To
model energy-constrained operations within Internet of Things,
one-bit sensor measurement quantization is employed and two
strategies for quantization are investigated. The fusion center
receives sensor bits via noisy binary symmetric channels and pro-
vides a more accurate global inference. Such a model leads to a
test with nuisances (i.e., the target position xT) observable only
under H1 hypothesis. Davies’ framework is exploited herein to
design the generalized forms of Rao and locally optimum detec-
tion (LOD) tests. For our generalized Rao and LOD approaches,
a heuristic approach for threshold optimization is also proposed.
The simulation results confirm the promising performance of our
proposed approaches.

Index Terms—Distributed detection (DD), generalized-
likelihood ratio test, Internet of Things (IoT), locally optimum
detection (LOD), Rao test, wireless sensor networks (WSNs).

I. INTRODUCTION

THE Internet of Things (IoT) envisages billions of tiny
devices with sensing, computation, and communication

capabilities to be used in everyday life and currently represents
a game-changing technology for the wireless communica-
tions and sensing sector [1], [2]. Wireless sensor networks
(WSNs) constitute the “sensing arm” of the IoT, with dis-
tributed detection (DD) representing a widely investigated
task [3], [4] having multifold applications, such as cogni-
tive radio systems [5], [6] or surveillance [7]. Unfortunately,
strict bandwidth and energy constraints in WSNs hamper full-
precision reporting by the sensors, which usually are limited
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to sending one bit to the fusion center (FC) regarding the
inferred hypothesis. For the mentioned reason, in the last few
years, several works have focused on DD based on one-bit
quantized measurements [8]–[10]. In such a case, the optimal
decision procedure at the sensors is one-bit quantization of
the local-likelihood ratio (LR) [11], [12]. There are two prob-
lems with this procedure. First, the design complexity of the
quantizer thresholds grows exponentially [13], [14], and sec-
ond, the sensor LR cannot be evaluated due to unknown target
parameters [14]. Hence, the bit reported is either the outcome
of a raw-measurement quantization [15]–[17] or represents
the inferred binary-valued event (via suboptimal detection
statistics [18]).

In both options, the FC gathers the sensor-generated bits
and fuses them via a suitably designed fusion rule to improve
the single-sensor detection capability. In IoT-based systems,
the FC could be hosted in the cloud by implementing a
“sensing as a service” paradigm [19]. The optimum fusion
rule, under conditional independence, involves the compar-
ison of a weighted sum of the received sensor bits with
a threshold, with weights depending on the unknown tar-
get parameters [3]. Still, when the model is parametrically
specified (with some parameters unknown), the FC faces a
composite test of hypotheses and the generalized LRT (GLRT)
is the usual design choice [20]. Indeed, GLRT-based fusion of
quantized data has been extensively studied in the DD-focused
WSN literature [16], [21], [22], including the challenging
case of an unknown source located at an unknown position
(uncooperative target), because it requires the least amount
of knowledge. Accordingly, some recent works have dealt
with this problem [7], [15], [22]–[24]. In [22], a GLRT was
derived for detecting a target with unknown position and
emitted power. To obtain computationally simpler solutions
(not requiring a grid search over both the target location
and the emitted power/signal domains), generalized forms of
score tests (abbreviated as G-Score tests) have been proposed
for noncooperative detection of both deterministic [15] and
stochastic target emissions [7], [23]. Recently, Ciuonzo and
Salvo Rossi [24], Zhu et al. [25], and Wang et al. [26] have
addressed the challenging multiplicative fading scenario in
distributed estimation and detection problems, respectively.
The latter scenario is a generalization of both determinis-
tic and stochastic models, and is able to model complicated
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Fig. 1. System model considered.

propagation mechanisms (e.g., a Rician model or estimated
small-scale fading).

The main contributions of this article are summarized as
follows.

1) In this article, we focus on DD of a noncooperative
target with a spatially dependent emission (signature),
that experiences multiplicative fading. Our DD sce-
nario encompasses detection of a noncooperative target
with an amplitude attenuation function (AAF) depend-
ing on the sensor-target distance, one-bit measurement
quantization, and noisy reporting channels [modeled as
binary symmetric channels (BSCs)] emulating orthog-
onal multiple-access channels such as in narrowband
IoT (NB-IoT) [27]. Such a scenario encompasses those
considered in previous works as special cases [7], [15],
[23].

2) We consider both raw quantization (RQ) and square-
based quantization (SQ) in the design of low-complexity
fusion rules that yield good performance. We show that
the usual RQ [24], [26] does not always represent a good
choice when nonline-of-sight terms become relevant in
multiplicative fading. Hence, we consider SQ to cope
with this issue. This operation transforms the composite
test from two sided (on the signal) to one sided (on the
power) with nuisance parameters present only under the
hypothesis H1 [28].

3) We devise and optimize: a) generalized Rao (G-Rao)
and b) generalized locally optimum detection (LOD)
(G-LOD) approaches, based on RQ and SQ, respec-
tively, for the aforementioned scenario. The derived
expression is shown to require significantly lower com-
plexity than their GLR counterparts based on the same

quantization type, thus highlighting their practical appli-
cability. Furthermore, the resulting SQ (for G-Rao) and
RQ (for G-LOD) optimization (by means of the cor-
responding quantization thresholds) are shown to be
sensor-individual (i.e., each threshold can be optimized
independently of the others), considers the sensor-FC
channel status, and does not depend upon either the
target strength or its position, thus allowing offline
computation.

4) A comprehensive simulation-based analysis is presented
to compare the proposed G-Rao and G-LOD tests
with: a) their GLR counterparts and b) tests based on
full-precision measurements (i.e., no quantization and
reporting loss). The above comparison is performed over
relevant WSN parameters, such as the sensing signal-to-
noise ratio (SNR), the ratio between direct and scattered
terms, and the current reporting channel quality.

We note that the present work extends our earlier conference
paper [24], which provided only a preliminary analysis of
fusion rule design and quantizer optimization-based only on
the G-Rao test. To the best of our knowledge, only the afore-
mentioned work has tackled DD of an uncooperative target in
the multiplicative fading caseto date.

The remainder of this article is organized as follows.
Section II states the considered problem. Section III devel-
ops GLR and G-score tests for the setup introduced. Then,
Section IV focuses on the quantizer design. Numerical results
and concluding discussion are given in Section V.

Notation: Lowercase bold letters are adopted for vectors,
with an representing the nth component of a; E{·}, (·)T, and
u(·) denote expectation, vector-transpose, and the unit step
function, respectively; p(·) and P(·) represent the probability
density functions (pdf) and probability mass functions (pmf),
respectively; χ2

k [resp. χ
′2
k (ξ)] denotes a chi-square (resp. a

noncentral chi-square) pdf with k degrees of freedom (resp.
and noncentrality parameter ξ ); N (μ, σ 2) denotes a Gaussian
pdf with mean μ and variance σ 2; Q(·) [resp. pN (·)] denotes
the complementary cumulative distribution function (resp. the
pdf) of a normal random variable in its standard form, i.e.,
N (0, 1); the symbol ∼ (resp.

a∼) corresponds to “distributed
as” (resp. to “asymptotically distributed as”).

II. WSN MODEL AND PROBLEM FORMULATION

We consider a set of sensors k ∈ K � {1, . . . ,K} moni-
toring a given area to test the absence (H0) or presence (H1)
of a noncooperative target, as illustrated in Fig. 1. When the
target is present (H1), we assume that it radiates an unknown
deterministic isotropic signal θ , which is affected by path loss,
multiplicative fading, and additive noise, before reaching each
sensor

{H0 : zk = wk

H1 : zk = g(xk, xT) hk θ + wk.
(1)

In (1), zk ∈ R denotes the kth sensor observation, whereas
wk ∼ N (0, σ 2

w,k) and hk ∼ N (μh,k, σ
2
h,k) are the noise
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and multiplicative fading terms, respectively.1 Also, xk ∈ R
d

denotes the known kth sensor position (obtained via self-
localization procedures), while xT ∈ R

d denotes the unknown
target position. Both the terms xT and xk determine the value
of the generic AAF g(xT , xk). In fact, any functional form
of the AAF (accounting for the spatial target signature) may
be considered in this article, given the availability of g(·, ·)
at FC.2

For compactness, in what follows, we use the short-
hand notation gk � g(xT , xk). Hence, based on the
above assumptions, zk|H0 ∼ N (0, σ 2

w,k) and zk|H1 ∼
N (gk μh,k θ , σ

2
eq,k(θ)), k ∈ K, where σ 2

eq,k(θ) = (g2
k σ

2
h,k θ

2 +
σ 2

w,k) denotes the kth equivalent variance.
Furthermore, we define: 1) target SNR and 2) the ratio

between direct (Line of Sight, LoS) and scattered (Non
Line-of-Sight, NLoS) target power terms, respectively, as

SNR � 10 log10

(
θ2
(
μ2

h + σ 2
h

)
/σ 2

w

)
(2)

κ � 10 log10

(
μ2

h /σ
2
h

)
. (3)

To address the energy and bandwidth limitations in IoT sce-
narios, the kth sensor quantizes zk into a single bit.3 Herein,
we investigate two quantization strategies. In the first case,
we consider the usual RQ [15], namely, bk � u (zk − τk). In
the second case, we investigate SQ, namely, dk � u(z2

k − γk),
which was used for the purely random (viz., stochastic) signal
case in [23] and [29]. For RQ, the bit detection probability
under H1 equals

βk(θ, xT) � Q
([
τk − gk μh,k θ

]
/

√
σ 2

eq,k(θ)
)

(4)

while for H0 it is given by β0,k � βk(θ = 0, xT) =
Q(τk/

√
σ 2

w,k). Differently, for SQ, the bit detection probability
under H1 equals

ρk(θ, xT) � Q
([√

γk − gk μh,k θ
]
/

√
σ 2

eq,k(θ)
)

+ Q
([√

γk + gk μh,k θ
]
/

√
σ 2

eq,k(θ)
)

(5)

while for H0 it is ρ0,k � ρk(θ = 0, xT) = 2Q(
√
γk/σ

2
w,k).

To model energy-constrained communications within the
IoT context, after RQ (resp. SQ) the kth sensor bit bk (resp.
dk) is sent over a channel modeled as a BSC. Hence, the
FC receives a noisy version b̂k (resp. d̂k), where Pe,k denotes
the known bit-error probability of the kth link, namely, b̂k =
(1−bk) [resp. d̂k = (1−dk)] with bit-flip probability Pe,k. We

1We hypothesize that sufficient spatial separation of the sensors implies
statistical independence of noise and fading terms wks and hks.

2The latter functional form may be estimated by means of some training
data obtained by running an initialization phase (consisting of n = 1, . . . ,N
timeslots) in which a cooperative target (with emitted signal θ [n] and posi-
tion xT [n] known at the FC) moves throughout the surveilled area and the
(quantized) measurements transmitted by the WSN are collected by the FC.
Once a sufficient number of training data have been gathered, the AAF may
be estimated via standard learning techniques (e.g., kernel-based regression).

3In this work, we restrict our attention to: 1) deterministic and 2) one-bit
quantizers. Still, the proposed fusion methodology (including the quantizer
optimization later reported in Section IV) could be in principle applied also
in the general case of nondeterministic (e.g., dithered) and multibit quantizers.
The above interesting generalization is, however, left to future studies.

note that the considered set of independent BSCs can emulate
the modulation-decoding process4 usually adopted in WSNs
and IoT applications employing the uplink of the NB-IoT
standard [27]. Indeed, although WSNs need to provide con-
nectivity to a large number of sensors, the latter have low data
rate requirements. Accordingly, low-order modulation schemes
(e.g., BPSK) and single-carrier frequency-division multiple
access perfectly fit their needs. Such configuration is a com-
mon operational mode of the NB-IoT uplink, as detailed in
what follows.

More specifically, NB-IoT has a bandwidth of 180 kHz, cor-
responding to one LTE physical resource block. Additionally, a
possible subcarrier spacing equals 3.75 kHz (the other config-
uration spacing allowed is 15 kHz) in single-tone transmission,
for a total of 48 subcarriers, and each subcarrier can be allo-
cated to a different user for a time slot of 32 ms. The latter
constitutes the elementary resource unit to be allocated to a
single user for sending its data. Therefore, if the sensing duty
cycle for each node is 0.1 s, then the system can support the
noninterfering transmission/reception of more than 150 sen-
sors performing one-bit quantization of their corresponding
measurements in a given cell. In view of these considerations,
we can safely hypothesize orthogonal channels between the
sensors and the FC, similar to [2].

For the sake of a compact notation, we collect the received
bits as b̂ � [ b̂1 · · · b̂K ]T and d̂ � [ d̂1 · · · d̂K ]T in RQ
and SQ cases, respectively.

Given these assumptions, when RQ is applied, the prob-
ability that b̂k = 1 under H1 is given by α

rq
k (θ, xT) �

(1 − Pe,k)βk(θ, xT) + Pe,k(1 − βk(θ, xT)), whereas under H0
α

rq
0,k = (1 − Pe,k)β0,k + Pe,k(1 − β0,k). Similarly, when SQ

is adopted, the probability that d̂k = 1 under H1 is given by
α

sq
k (θ, xT) � (1−Pe,k)ρk(θ, xT)+Pe,k(1−ρk(θ, xT)), whereas

under H0 the expression equals αsq
0,k = (1−Pe,k)ρ0,k+Pe,k(1−

ρ0,k).
Definition of Test of Hypotheses: Note that the full-precision

testing problem, i.e., which assumes the availability of orig-
inal measurements z1, . . . zK , depends on the unknown target
position xT , which can be observed at the FC only when the
signal is present (θ �= θ0, where θ0 = 0), i.e., {H0,H1} →
{θ = θ0, θ �= θ0}. Hence, the test with full-precision measure-
ments is a two-sided one with a nuisance term (xT ) identifiable
only under H1 [28].

However, when considering the two quantization
approaches, some further clarifications are necessary. In
the case of RQ, the unknown target position xT can be
observed at the FC only when the signal is present (θ �= θ0,
where θ0 = 0), i.e., {H0,H1} → {θ = θ0, θ �= θ0}, since
βk(θ, xT) [and, as a consequence, αrq

k (θ, xT)] depends on θ .
Hence, the corresponding test is again a two-sided one
with a nuisance term (xT ) identifiable only under H1 [28].

4We remark that the explicit inclusion of noisy and fading effects in the
model underlying the design of the presented fusion rules (that is, considering
a “decode-and-fuse” approach [30]), although promising in terms of achiev-
able performance gains, constitutes a challenging task. This is due to the more
involved expression of the pdf of the resulting received signal vector and to
the difficulty in the evaluation of the consequent score/FI expressions. For
this reason, the design of aforementioned class of fusion rules is left to future
studies.
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Conversely, when considering SQ, the kth probability
ρk(θ, xT) [and, as a consequence, αsq

k (θ, xT)] is actually a
function of the target emitted power Pθ � θ2. Therefore, we
have

ρk(Pθ , xT) � Q
([√

γk − |gk μh,k|
√

Pθ
]
/

√
σ 2

eq,k(Pθ )
)

+ Q
([√

γk + |gk μh,k|
√

Pθ
]
/

√
σ 2

eq,k(Pθ )
)

(6)

where σ 2
eq,k(Pθ ) = (g2

k σ
2
h,k Pθ + σ 2

w,k). Hence, xT can be
observed only when the power is present (Pθ > Pθ0 , where
Pθ0 = 0), i.e., {H0,H1} → {Pθ = Pθ0 ,Pθ > Pθ0}. Thus, in
the SQ case, we test a one-sided parameter with a nuisance
term (xT ) identifiable only under H1 [28].

The aim of our study is to design a simple test (from a
computational viewpoint) deciding in favor of H0 (resp. H1)
when the statistic [�(b̂) or �(d̂)] is below (resp. above) the
threshold γfc, and the design of the quantizer (i.e., optimized
τk or γk, k ∈ K) for each sensor. The FC performance is eval-
uated in terms of its false alarm (PF � Pr{� > γfc|H0}) and
detection (PD � Pr{� > γfc|H1}) probabilities, respectively,
with � denoting the generic decision statistic at the FC.

III. DESIGN OF THE FUSION RULES

First, we observe that the log-likelihood function of the
received vector b̂ versus (θ, xT), namely, log P(b̂; θ, xT), can
be expressed in explicit form as [7] and [22]

K∑
k=1

{
b̂k log

[
α

rq
k (θ, xT)

]+
(

1 − b̂k

)
log
[
1 − α

rq
k (θ, xT)

]}
.

(7)

We recall that the above expression holds also for SQ,
i.e., with the log-likelihood log P(d̂; θ, xT), if we replace b̂k

and αrq
k (θ, xT) with d̂k and αsq

k (θ, xT), respectively. We now
introduce the design rationales considered for obtaining the
proposed fusion rules.

The GLR is the most common approach for tests with com-
posite hypotheses [22], with its implicit expression for the
decision statistic based on RQ given by

�GLR

(
b̂
)

� 2 log

⎡
⎣P
(

b̂; θ̂1, x̂T

)

P
(

b̂; θ0

)
⎤
⎦. (8)

In the above equation, the pair (θ̂1, x̂T) represents the
maximum-likelihood (ML) estimates under H1, i.e.,(

θ̂1, x̂T

)
� arg max

(θ,xT )
P
(

b̂; θ, xT

)
. (9)

Similarly, the GLR statistic based on SQ is given by

�GLR

(
d̂
)

� 2 log

⎡
⎣P
(

d̂; P̂θ1 , x̂T

)

P
(

d̂; Pθ0

)
⎤
⎦. (10)

Analogously, the pair (P̂θ1 , x̂T) represents the ML estimates
under H1, obtained as(

P̂θ1 , x̂T

)
� arg max

(Pθ ,xT )
P
(

d̂; Pθ , xT

)
. (11)

We observe that �GLR [see (8) and (10)] requires the solution
of an optimization task. Unfortunately, the ML estimate pair
(θ̂1, x̂T) [resp. (P̂θ1 , x̂T)] cannot be obtained in closed form
and this hinders its practical implementation. Hence, a (joint)
grid approach is usually adopted on (θ, xT ) [resp. (Pθ , xT)] [7],
[21], [22]. Accordingly, the GLR statistic is able to provide
an estimate for both the emitted signal θ (resp. power Pθ ) and
the target location xT .

On the other hand, Davies’ work represents an alternative
approach for capitalizing on either the two-sided (when RQ
is applied) or one-sided (when SQ is applied) nature of the
considered hypothesis test [28], allowing to generalize score
tests to the more challenging scenario of nuisance parame-
ters observed only under H1. In fact, score tests rely on the
ML estimates of nuisances under H0 [20], which cannot be
obtained here since they are unobservable.

For instance, referring to our model and considering the
design of a Rao test (based on RQ), the numerator of the statis-
tics would be given by (∂ log [P(b̂ ; θ, xT)] /∂θ)2|θ=θ0, xT=x̂T,0 ,
where x̂T,0 represents the ML estimate of the target position
under H0. However, when the hypothesis H0 holds, the target
is absent, and thus, its position xT cannot be estimated.

Conversely, if xT were known, the Rao (LOD) statistic
would represent a suitable decision statistic for the correspond-
ing two-sided (resp. one-sided) testing on θ (resp. Pθ ) [20].
Unfortunately, since the target location parameter is not known
in our case, we rather obtain a functional score statistics
indexed by xT . Thus, to overcome this technical difficulty,
Davies proposed the functional supremum as the relevant
statistic, that is

�GRao

(̂
b
)

� max
xT

(
∂ log

[
P
(

b̂ ; θ, xT

)]
/∂θ
)2
∣∣∣∣
θ=θ0

Irq(θ0, xT)
(12)

�GLOD

(̂
d
)

� max
xT

∂ log
[
P
(

d̂ ; Pθ , xT

)]
/∂Pθ

∣∣∣
Pθ=Pθ0√

Isq
(
Pθ0 , xT

) (13)

where Irq(θ, xT) � E{(∂ log [P(b̂; θ, xT)]/∂θ)2} represents the
fisher information (FI) of b̂ (with respect to θ ), assuming xT

known. Similarly, Isq(Pθ , xT) � E{(∂[ log(d̂; Pθ , xT)]/∂Pθ )2}
represents the FI of d̂ (with respect to Pθ ), assuming xT known.
The underlying idea of Davies’ approach is to select a test
which accepts the hypothesis H1 when the functional statistic
evaluated at the most-likely target position [i.e., that corre-
sponding to arg maxxT �(·; xT)] exceeds a given threshold γfc.
This choice can be also interpreted as a “GLRT-like” phi-
losophy on these particular nuisance parameters. Accordingly,
both the generalized score statistics in (12) and (13) implicitly
estimate only the target location xT .

Hereinafter, we will refer to the decision statistics in
(12) and (13) as Generalized Rao (G-Rao) and Generalized
LOD (G-LOD), respectively, to indicate the use of Rao and
LOD as the inner statistic within the Davies framework [7].

The closed-form expression of �GRao is drawn by
means of the explicit forms of the score function (i.e.,
∂ log [P(̂b ; θ, xT) /∂θ ]) and the FI [i.e., Irq(θ, xT)], both
evaluated at θ = θ0. Their derivation is provided in
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Appendices A and B, respectively. In the former case, the final
expression of the (xT -conditional) score function at θ = θ0 is
given by

∂ log P
(

b̂; θ, xT

)
∂θ

∣∣∣∣∣∣
θ=θ0

=
K∑

k=1

(
b̂k − α

rq
0,k

)
�

rq
k gk (14)

where the auxiliary definition

�
rq
k �

(
1 − 2Pe,k

)
α

rq
0,k

[
1 − α

rq
0,k

] μh,k

σw,k
pN

⎛
⎝ τk√

σ 2
w,k

⎞
⎠ (15)

has been employed. We recall that pN (·) is used to denote
the pdf of a normal random variable in its standard form.
Also, we highlight that the term �

rq
k allows to express the (xT -

conditional) score function at θ = θ0 in (14) in a compact form
by separating deterministic terms not depending on xT from:
1) random contributions [i.e., (b̂k −αrq

0,k)] and 2) deterministic
terms that are instead function of xT (i.e., gk). In the latter
case, the (xT -conditional) FI at θ0 is given by

Irq(θ0, xT) =
K∑

k=1

α
rq
0,k

(
1 − α

rq
0,k

) (
�

rq
k

)2
g2

k

=
K∑

k=1

ψ
rq
0,k g2

k (16)

where the definition ψ
rq
0,k � α

rq
0,k(1 − α

rq
0,k) (�

rq
k )

2 has been
employed in the last line. Accordingly, the explicit form
of the G-Rao statistic can be thus rewritten as �GRao(̂b) �
maxxT �Rao( b̂, xT), where

�Rao

(̂
b, xT

) =
{∑K

k=1 ν
rq
k

(̂
bk
)

g(xT , xk)
}2

∑K
k=1 ψ

rq
0,k g2(xT , xk)

(17)

denotes the Rao statistic assuming xT known, and we have
defined νrq

k (̂bk) � (̂bk − α
rq
0,k)�

rq
k .

In contrast, the explicit expression of �GLOD is drawn
by means of the explicit forms of the score function
(log [P(̂d ; Pθ , xT)] /∂Pθ ) and the FI (Isq(Pθ , xT)), both eval-
uated at Pθ = Pθ0 . Their derivation is provided in the
Appendices A and B, respectively. In the former case, the final
expression of the (xT -conditional) score function at Pθ = Pθ0

is given by

∂ log P
(

d̂; θ, xT

)
∂Pθ

∣∣∣∣∣∣
Pθ=Pθ0

=
K∑

k=1

(
d̂k − α

sq
0,k

)
�

sq
k g2

k (18)

where the definition

�
sq
k �

(
1 − 2Pe,k

)√
γk

(
μ2

h,k + σ 2
h,k

)

α
sq
0,k

[
1 − α

sq
0,k

]
σ 3

w,k

pN

⎛
⎝
√
γk

σ 2
w,k

⎞
⎠ (19)

has been employed. We highlight that the term �
sq
k allows

to express the (xT -conditional) score function at Pθ = Pθ0 in
(18) in a compact form by separating deterministic terms not
depending on xT from: 1) random contributions [i.e., (d̂k −

α
sq
0,k)] and 2) deterministic terms that are instead function of

xT (i.e., g2
k). In the latter case, the (xT -conditional) FI at Pθ0

is given by

Isq(Pθ0 , xT
) =

K∑
k=1

α
sq
0,k

(
1 − α

sq
0,k

) (
�

sq
k

)2
g4

k

=
K∑

k=1

ψ
sq
0,k g4

k (20)

where the definition ψ
sq
0,k � α

sq
0,k(1 − α

sq
0,k)(�

sq
k )

2 has been
employed in the last line. As a result, the explicit form
of the G-LOD statistic can be shown to be �GLOD(̂d) �
maxxT �LOD( d̂, xT) where

�LOD

(̂
d, xT

) =
∑K

k=1 ν
sq
k

(̂
dk
)

g2(xT , xk)√∑K
k=1 ψ

sq
0,k g4(xT , xk)

(21)

denotes the LOD statistic assuming xT known, and we have
defined νsq

k (̂dk) � (̂dk − α
sq
0,k)�

sq
k .

The appeal of G-Rao and G-LOD statistics is motivated by
their simpler implementation (as θ̂1 and P

θ̂1
are not needed),

requiring solely a grid with respect to xT , that is

�GRao

(̂
b
) ≈ max

i=1,...NxT

�Rao

(̂
b, xT [i]

)
(22)

�GLOD

(̂
d
) ≈ max

i=1,...NxT

�LOD

(̂
d, xT [i]

)
. (23)

Thus, their complexity is O(K NxT ), implying a significant
reduction with respect to the GLR. Indeed, the complexity
of the latter equals O(K NxT Nθ ) and O(K NxT NPθ ) when RQ
and SQ are adopted, respectively. In the above expressions, the
terms NxT and Nθ (resp. NPθ ) denote the number of position
and amplitude (resp. power) bins employed. A comparison of
the complexity involved in the implementation of the above
fusion rules is summarized in Table I.

It is evident that �GRao depends on τk’s (collected as τ �[
τ1 · · · τK

]T), via the terms νrq
k (̂bk) and ψ rq

0,k, k ∈ K, which
can be optimized to boost performance, as performed in [24].
The same reasoning applies to �GLOD, as it is a function of
γk’s (collected as γ �

[
γ1 · · · γK

]T), through νsq
k (̂dk) and

ψ
sq
0,k, k ∈ K, which can be optimized as well. We notice that

the same optimization applies also to �GLR for RQ and SQ
cases. We accomplish this objective in what follows.

IV. OPTIMIZATION OF QUANTIZERS THRESHOLDS

We point out that (asymptotically) optimal determinis-
tic quantizers cannot be obtained, since no closed-form
performance expressions exist for the tests based on Davies
approach [28]. Hence, the rationale in [16], [29], and [31]
cannot be applied to our case. Due to this reason, we use a
modified approach (that resorts to a heuristic, yet intuitive,
basis) that has been successfully applied to DD problems for
the special cases of either purely deterministic or stochastic
target emission [15], [23].

In detail, it is well known that the xT -clairvoyant Rao
statistic �Rao is distributed (under an asymptotic, weak-signal,
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TABLE I
SUMMARY OF FUSION RULES CONSIDERED IN THIS WORK. FOR EACH OF THESE, THE COMPUTATIONAL COMPLEXITY REQUIRED NEEDED

FOR ITS IMPLEMENTATION (VIA GRID DISCRETIZATION) IS ALSO REPORTED (LAST COLUMN)

assumption)5 as [20]

�Rao(xT , τ )
a∼
{
χ2

1 , under H0

χ
′2
1

(
λQ(xT , τ )

)
, under H1.

(24)

A similar result applies to the xT -clairvoyant LOD statistic
�LOD, which is asymptotically (under the same conditions as
the Rao test) distributed as [20]

�LOD(xT , γ )
a∼
{N (0, 1), under H0
N (δQ(xT , γ ), 1

)
, under H1.

(25)

The noncentrality λQ(xT , τ ) � (θ1 − θ0)
2 I(θ0, xT) and the

deflection δQ(xT , γ ) � (Pθ1 − Pθ0)
√

I(Pθ0 , xT , γ ) measures6

in (24) and (25), respectively, are given as

λQ(xT , τ ) = θ2
1

K∑
k=1

ψ
rq
0,k(τk) g2(xT , xk) (26)

δQ(xT , γ ) = Pθ1

√√√√ K∑
k=1

ψ
sq
0,k(γk) g4(xT , xk). (27)

Additionally, they are reported as a function of (xT , τ ) and
(xT , γ ), respectively, to stress the dependence on the unknown
position xT and the vector of variables to optimize (τ or γ ).
Finally, the terms θ1 and Pθ1 represent the true values of the
target signal andpower, respectively, under H1.

Clearly, the larger λQ(xT , τ ) and δQ(xT , γ ) are, the bet-
ter the xT−clairvoyant Rao and LOD tests, respectively, will
perform when the target to be detected is located at xT . The
same applies to the xT -clairvoyant GLR on either quantizer-
originated data. For this reason, we aim to design the threshold
vectors τ and γ , respectively, as

τ � � arg max
τ

λQ(xT , τ ) (28)

5That is, |θ1 − θ0| = c/
√

K for a certain value c > 0 [20].
6We employ the slightly modified notations I(θ, xT , τ ) and ψ rq

0,k(τk) [resp.

I(Pθ , xT , γ ) and ψsq
0,k(γk)], as opposed to I(θ, xT ) and ψ rq

0,k [resp. I(Pθ , xT )

and ψsq
0,k], to stress the dependence on thresholds τk’s. (resp. γk’s).

γ � � arg max
γ

δQ(xT , γ ). (29)

However, by doing so, we could potentially obtain (impracti-
cal) solutions τ � and γ �, which depend on xT . Luckily, for this
particular problem, the optimization simplifies into K decou-
pled threshold designs (hence, the optimization complexity
scales linearly with the number of sensors K), whose solutions
are also independent of xT [see (26) and (27)].

Indeed, for the G-Rao case, it holds (for each k)

max
τk

⎧⎪⎨
⎪⎩ψ

rq
0,k(τk) = μ2

h,k

σ 2
w,k

p2
N
(
τk /

√
σ 2

w,k

)
�k + β0,k(τk)

[
1 − β0,k(τk)

]
⎫⎪⎬
⎪⎭ (30)

where �k � [Pe,k (1−Pe,k)]/(1−2Pe,k)
2. The aforementioned

objective is shown in Fig. 2(a) for different values of Pe,k and
κ . It is known from the quantized estimation literature [32],
[33] that for Gaussian pdf τ �k � arg maxτk ψ

rq
0,k(τk) = 0 when

�k = 0 (corresponding to Pe,k = 0). However, it is not difficult
to show7 that this result holds for any value of �k �= 0, which
corresponds to different conditions of the noisy (Pe,k �= 0)
reporting channels. It is worth noticing that the objective max-
imizer in (30) coincides with the one obtained for the case of
a purely deterministic (LoS) parameter in [15] and is thus
independent of the specific LoS/NLoS relative weight.

7Indeed, the inequality p2
N (τ◦

k ) / {�k + Q(τ◦
k )[1 − Q(τ◦

k )]} ≤
p2
N (0) / {�k +Q(0)[1 −Q(0)]}, where τ◦

k � τk /
√
σ 2

w,k , can be rewritten as

{
p2
N
(
τ◦

k
)Q(0)[1 − Q(0)] − p2

N (0)Q(τ◦
k )
[
1 − Q(τ◦

k
)]}

+ �k

{
p2
N
(
τ◦

k
)− p2

N (0)
}

≤ 0.

The above condition is always satisfied since the negativity of first term within
the curly brackets follows directly from the result for ideal BSCs (�k =
0) [32], [34], while for the second term both (1) �k > 0 and (2) {p2

N (τ◦
k )−

p2
N (0)} ≤ 0 (because the normal distribution attains its mode at zero) hold.
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Fig. 2. Threshold objectives used for optimizing (a) RQ (ψ rq
0,k(τk)) and (b) SQ (ψsq

0,k(ρ0,k)) for Pe,k ∈ {0, 0.1, 0.2} and κ ∈ {−5, 0} dB. (a) Objective
function for selection of τ�k in G-Raorq and GLRrq. (b) Objective function for selection of ρ�0,k (viz., γ �k ) in G-LODsq and GLRsq.

Differently, for the G-LOD case, we have (for each k)

max
γk

⎧⎪⎨
⎪⎩ψ

sq
0,k(γk) =

(
μ2

h,k + σ 2
h,k

)2

(
σ 2

w,k

)2

×
p2
N
(√
γk/σ

2
w,k

)(
γk/σ

2
w,k

)
�k + ρ0,k(γk)

[
1 − ρ0,k(γk)

]
⎫⎪⎬
⎪⎭. (31)

Such maximization can be reformulated in terms of the sensor
false-alarm probability ρ0,k (being in bijective correspondence
with γk) as

ψ
sq
0,k

(
ρ0,k
) =

(
μ2

h,k + σ 2
h,k

)2

(
σ 2

w,k

)2

× p2
N
(Q−1

(
ρ0,k/2

)) [Q−1
(
ρ0,k/2

)]2
�k + ρ0,k

(
1 − ρ0,k

) . (32)

The aforementioned objective is shown in Fig. 2(b) for dif-
ferent values of Pe,k and κ . The optimized ρ�0,k can be easily
evaluated via a 1-D line search. It is worth noticing that the
objective maximizer in (32) coincides with the one obtained
for the case of a purely random (NLoS) parameter in [23], and
is thus independent on the specific LoS/NLoS relative weight.

Remarks: Although optimization of both raw- and square-
quantizer thresholds has been shown to be independent of
the specific LoS/NLoS relative weight, we stress that detec-
tion performance in both cases is going to depend signifi-
cantly on the above parameter instead. Indeed, we observe
that the (optimized) noncentrality λQ(xT , τ ) grows, via the
terms ψ

rq
0,k(τk), k = 1, . . .K, with μ2

h,k / σ
2
w,k [see (30)].

Conversely, the (optimized) noncentrality δQ(xT , γ ) grows, via
the terms ψ sq

0,k(ρ0,k), k = 1, . . .K, with (μ2
h,k + σ 2

h,k) / σ
2
w,k

[see (32)]. Hence, the above observations highlight that: 1) the
performance of G-LOD is likely to be weakly dependent over
a wide range of LoS/NLoS relative conditions (because of
the presence of the sum μ2

h,k + σ 2
h,k); 2) G-Rao is expected

to suffer from severe performance degradation when NLoS
terms become dominant (because of the absence of σ 2

h,k); and
3) in highly LoS conditions, we expect a more sensible gain
achieved by G-Rao at low SNR as the result of the squaring
of (μ2

h,k + σ 2
h,k) / σ

2
w,k in (32).

V. NUMERICAL RESULTS AND DISCUSSION

Simulation Setup: Herein, we compare the numerical
performance of the optimized G-Rao, G-LOD, and GLR
tests, based on the threshold-optimization design proposed in
Section IV. Specifically, our simulation setup considers a 2-D
(xT ∈ R

2) square area defined as A � [0, 1]2, in which a non-
cooperative target is detected by a WSN with K = 49 sensors.
For simplicity, the nodes are arranged to uniformly cover the
whole A in a grid fashion. Regarding the sensing model, the
AAF considered is a power law, namely

g(xT , xk) � 1 /
√

1 + (‖xT − xk‖/ η)α (33)

where we have set η = 0.2 (viz., approximate target extent)
and α = 4 (viz. decay exponent). Also, for simplicity, wk ∼
N (0, σ 2

w = 1) and μ2
h = 1, k ∈ K. Initially, we assume error-

free BSCs, namely, Pe,k = 0, k ∈ K. All the simulations are
based on 105 Monte Carlo runs.

Based on Section III, the implementation of �GLR, �GRao,
and �GLOD leverages grid search. Specifically, the search space
of the target signal θ (resp. power Pθ ) is assumed to be Sθ �
[−θ̄ , θ̄ ] (resp. SPθ � [0,Pθ̄ ]), where θ̄ > 0 (resp. Pθ̄ > 0) is
such that the SNR = 20 dB. The vector collecting the points
on the grid is then defined as

[−gT
θ 0 gT

θ

]T
(resp.

[
0 gT

Pθ

]
),

where gθ (resp. gPθ ) collects target strengths (power values)
corresponding to the SNR values −10:2.5:20 (dB). As a result,
the number of amplitude and power bins equals Nθ = 25
and NPθ = 13, respectively. Second, the search support of xT

coincides with the monitored area (SxT = A). Accordingly, the
2-D grid is the result of sampling A uniformly with NxT =
N2

c points, where Nc = 100. In this setup, the evaluation of
G-Rao (G-LOD) requires N2

c = 104 grid points, as opposed to
N2

c Nθ = 2.5×105 (resp. N2
c NPθ = 1.3×105) points for GLR.

This leads to a > 20 (resp. > 10) times lower complexity of
G-Rao (G-LOD) with respect to a GLR based on the same
quantization strategy.

Considered Baselines: For the sake of a complete compar-
ison and to assess the loss due to quantization, we consider
the following baselines: 1) a GLR having available the full-
precision measurements zk’s; 2) G-Rao; and 3) G-LOD tests
based on the same data. Regarding 1), its (implicit) expres-
sion is analogous to that in (8) and is implemented via the
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Fig. 3. PD versus κ factor (dB); false-alarm probability at FC is set to
PF = 0.01. A WSN with K = 49 sensors and target with SNR = 10 dB is
considered. The sensor thresholds for RQ and SQ are set according to the
design reported in Section IV.

following explicit expression:

�
fp
GLR(z) = max

(xT ,θ)

K∑
k=1

{
log
[
σ 2

w,k / σ
2
eq,k(θ)

]
+
[
z2

k / σ
2
w,k

]

−
[
(zk − gk μh,k θ)

2 / σ 2
eq,k(θ)

]}
.

(34)

For 2) and 3), their explicit expressions (the proof is not
included for brevity) are, respectively, given as

�
fp
GRao(z) � max

xT

(∑K
k=1 gk μh,k zk/σ

2
w,k

)2

∑K
k=1 g2

k μ
2
h,k / σ

2
w,k

(35)

�
fp
GLOD(z) � max

xT

∑K
k=1

1
2

[
g2

k

σ 2
w,k

(
μ2

h,k + σ 2
h,k

)(
z2
k

σ 2
w,k

− 1

)]
√

1
2

∑K
k=1

g4
k

σ 4
w,k

(
μ2

h,k + σ 2
h,k

)2
.

(36)

We remark that in order to apply G-LOD, the derivation is
actually performed starting from the square values z2

k (leading
to an analogous change of the nature of the test from two-sided
to one-sided as in the one-bit quantization case).

Discussion of Results: First, Fig. 3 provides a PD compari-
son (subject to PF = 0.01) of considered fusion rules versus κ
(dB), to assess their detection sensitivity versus the LoS/NLoS
relative terms ratio emitted by the noncooperative target. In
the present analysis, the target position xT is randomly sam-
pled within A at each run (when H1 is drawn). We consider a
sensing SNR = 10 dB for the target. The results highlight that
G-LODsq performs as well as a GLRsq and outperforms both
G-Rao and GLR based on RQ, over the whole κ range. The
observation of the performance for tests based on full-precision
highlight: 1) the loss due to quantization and 2) problems
related to considering a Rao test for the multiplicative fading
case, especially in a low κ condition.

Then, in Fig. 4, we perform a PD comparison (subject to
PF = 0.01) of considered fusion rules versus SNR (dB), to
assess their detection rate versus the sensing SNR for two dif-
ferent conditions of “scatteredness,” namely, κ = 0 dB and

Fig. 4. PD versus SNR (dB); false-alarm probability at FC is set to PF=0.01.
A WSN with K = 49 sensors is considered. Sensor thresholds for RQ- and
SQ-based rules are set according to Section IV. (a) κ = 10 dB. (b) κ = 0 dB.

Fig. 5. PD versus number of sensors K; false-alarm probability at FC is set
to PF = 0.01. A target with SNR = 10 dB and κ = 10 dB is considered.
Sensor thresholds for RQ- and SQ-based rules are set according to Section IV.

κ = 10 dB. The results highlight the close match between
the GLR and the corresponding generalized score test (G-Rao
or G-LOD) based on the same type of data (i.e., FP, RQ, or
SQ). By comparing G-Raorq and G-LODsq, it is apparent that
their relative performance depends on the scatteredness con-
dition. For example, while for high-LoS, G-Raorq performs
better, in the case of low-LoS, the advantage of G-LODsq

becomes apparent. The advantage of the squaring operation
is also evident from the performance gap reduction achieved
by G-LODfp with respect to GLRsq and G-Raofp.

As a complementary analysis, in Fig. 5, we deepen the
PD comparison (subject to PF = 0.01) by analyzing a vari-
able number of sensors K. In detail, we consider the same
square surveillance area A = [0, 1]2, but we assume a linear
increase of the number of sensors on the grid length (i.e., a
quadratic grow of K) so as to investigate the effect of WSN
grid densification on the system detection rate. As expected,
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Fig. 6. Comparison of G-LODsq and G-Raorq for randomly-generated target. PD versus (κ, SNR) (dB) for FC false-alarm probability set to PF = 0.01 for
(a) G-LODsq and (b) G-Raorq, respectively, and (c) their difference �PD � (PGLOD

D − PGRao
D ). A WSN with K = 49 sensors is considered: their thresholds

are optimized as in Section IV; ideal BSCs are assumed, i.e., Pe,k = 0.

Fig. 7. PD versus BEP (Pe,k = Pe); the FC false-alarm probability is
set to PF = 0.01. A WSN with K = 49 sensors and target with sensing
SNR = 10 dB are considered. (a) κ ∈ 0 dB. (b) κ ∈ 5 dB.

all the considered fusion rules benefit from a finer grid of
sensors monitoring the target to be detected, with the rules
based on FP achieving near-ideal performance with a lower
number of sensors (i.e., a coarser grid). Differently, concern-
ing fusion rules based on one-bit quantization, those based
on SQ achieve slightly improved performance for lower val-
ues of K. Differently, as the WSN densification grows, such
gain over RQ-based rules reduces. For instance, when targeting
PD ≈ 0.8, (resp. PD ≈ 0.9) a uniform grid with K = 49 (resp.
K = 64) sensors suffices for both RQ-based and SQ-basd
rules.

A more in-depth comparison of G-LODsq and G-Raorq

along the κ and SNR dimensions is reported in Fig. 6.
Specifically, we present PD versus (κ,SNR) (dB) for an FC
false-alarm probability set to PF = 0.01 for G-LODsq (left)
and G-Raorq (center), respectively, and their difference �PD

(right). From the inspection of results, we can infer how
G-Raorq is highly sensitive to low values of κ (NLoS condi-
tion). Differently, G-LODsq is almost insensitive to the specific
Los/NLoS condition (viz., the value of κ). The performances
of both fusion rules degrade with a decreasing SNR. By
comparing the performance of both rules [via the difference
�PD � (PGLOD

D − PGRao
D )] over the whole (κ,SNR) plane, it is

apparent how high SNR and high κ represent the region where
G-LODsq “wins,” whereas an opposite outcome is observed
in the case of low SNR and low κ (i.e., G-Raorq wins). Still,
in the latter case, the performance gain ensured by G-Raorq

over G-LODsq (right figure) is not as high as the winning
G-LODsq region. Such results may be explained by look-
ing at the terms ψ rq

0,k(τk) and ψ sq
0,k(ρ0,k) [see (30) and (32),

respectively], and their relative trends highlighted at the
end of Section IV. Indeed, ψ rq

0,k(τk) and ψ
sq
0,k(ρ0,k) directly

influence the value of the xT -clairvoyant noncentrality param-
eters λQ(xT , τ ) and δQ(xT , γ ), respectively, which limit
(from the above) the achievable performance of G-Raorq

and G-LODsq.
We then delve into the analysis of the effect of the reporting

errors by means of Fig. 7. The latter provides a PD compar-
ison (subject to PF = 0.01) of the seven fusion rules versus
Pe,k = Pe, k ∈ K (i.e., the same BEP for all the sensors). Two
different scatteredness cases are considered, namely, κ = 0 dB
[Fig. 7(a)] and κ = 5 dB [Fig. 7(b)]. The results highlight
that BEP (viz., Pe) increase has a detrimental effect on all
the RQ/SQ-based rules and further enlarges their gap with
respect to FP-based counterparts. Remarkably, in the case of
κ = 5 dB, the benefits of SQ (over RQ) are almost nullified
when Pe ≈ 0.15.

Finally, we investigate the detection coverage properties of
the considered fusion rules over the entire surveillance area
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Fig. 8. PD heatmaps versus target position xT for (a) G-Raorq, (b) G-LODsq, (d) GLRrq, and (e) GLRsq. For completeness, also the best two full-precision
baselines [(c) and (f), corresponding to GLRfp and G-LODfp, respectively] are reported. The FC false-alarm probability is set to PF = 0.01. WSN with
K = 49 sensors and target with sensing SNR = 5 dB and κ = 0 dB are considered. Corresponding decisions are sent over BSCs with Pe,k = 0.1. The sensor
thresholds for RQ and SQ are set according to the design reported in Section IV.

A. To this end, in Fig. 8, we report PD (under PF = 0.01)
versus the target location xT (for SNR = 5 dB and κ = 0 dB)
for all the rules considered, except of G-Raofp, due to its poor
performance in this peculiar NLoS configuration. It is apparent
that PD(xT) surface is similar for all the rules from a qualita-
tive viewpoint. Also, it underlines lower detection performance
at the edges of the surveillance area. This outcome arises from
the regular WSN placement within A for the scenario ana-
lyzed. From the comparison among the different rules, it is
apparent that the G-LODsq test presents only marginal loss
with respect to GLRsq, and significant gain with respect to
G-Raorq and GLRrq. Clearly, the detection coverage is not as
good as the FP counterparts considered, due to the degrading
effect of parsimonious (one-bit) quantization.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we devised a WSN-based DD scheme in the
presence of: 1) multiplicative fading; 2) quantized measure-
ments; and 3) nonideal and nonidentical BSCs. The target to
be detected emits an unknown (since it is noncooperative)
deterministic signal (θ ) from unknown location (xT ). Since
xT is a nuisance parameter present only under H1 (i.e., when
θ �= 0), we designed generalized versions of the Rao and
LOD tests as attractive (low-complexity) alternatives to GLR
[the latter requiring a grid search on the whole space (θ, xT)]
based on the same quantization choice. These generalized
forms were obtained from the framework in [28]. The resulting
forms of G-Rao and G-LOD require single maximization (with
respect to xT ) of a family of xT -conditional decision statistics,
obtained by assuming xT known, thus avoiding the need for
grid search over θ (or Pθ ). Furthermore, we developed an
effective criterion (drawn from semitheoretical performance)

to optimize sensor thresholds of either quantization type (RQ
or SQ). This resulted in a zero-threshold choice for RQ and a
simple 1-D search for SQ. Also, these outcomes were shown
to be independent of the specific κ value. Numerical results
for G-LODsq underlined: 1) similar PD values to both G-Raorq

and GLRrq in the LoS case; 2) similar performance of GLRsq

in the NLoS case; and 3) high gains with respect to G-Raorq

over a relevant κ range. Accordingly, we believe the adoption
of SQ with G-LODsq represents an appealing design choice
for DD in such scenario for a wide range of Los/NLoS condi-
tions. The sole exception is represented by high-LOS low-SNR
scenarios, where the joint use of RQ and G-Rao test at the FC
should be preferred.

Future directions of research will investigate DD via sen-
sor fusion in more challenging and close-to-real contexts.
These include multibit quantizers [35], robustness to phy-
layer attacks [36], time-correlated reporting channels [37],
multidimensional measurement models [38], incompletely
specified noise and model pdfs (e.g., unknown AAF), models
enjoying sparsity [8], and energy-efficient censoring sensors.
Additionally, the derivation of (asymptotic) theoretical expres-
sions for the detection (PD) and false-alarm (PF) probabilities
of generalized score tests is also foreseen as a (challenging)
avenue for future research.

APPENDIX A
DERIVATION OF THE SCORE FUNCTIONS

In this Appendix, we derive the xT -conditional
score functions for G-Rao and G-LOD tests, namely,
∂ log [P(b̂ ; θ, xT) /∂θ ] and i.e., ∂ log [P(d̂ ; Pθ , xT) /∂Pθ ],
evaluated at θ0 and Pθ0 , respectively.

We first focus on the score function needed for G-Rao eval-
uation. Precisely, based on the factorization form in (7), the
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log-likelihood function log P(b̂; θ, xT) is given by

log P
(

b̂; θ, xT

)
=

K∑
k=1

{̂
bk log

[
α

rq
k (θ, xT)

]+ (1 − b̂k
)

× log
[
1 − α

rq
k (θ, xT)

]}
. (37)

Taking the derivative of log P(b̂; θ, xT) with respect to θ , we
write the corresponding expression as (due to independence)

∂ log P
(

b̂; θ, xT

)
∂θ

=
K∑

k=1

P
′(

b̂k; θ, xT

)

P
(

b̂k; θ, xT

)

=
K∑

k=1

∂α
rq
k (θ, xT)

∂θ

(
b̂k − α

rq
k (θ, xT)

)
α

rq
k (θ, xT)

[
1 − α

rq
k (θ, xT)

] . (38)

According to the bit probability model in (4), the derivative
of αrq

k (θ, xT) with respect to θ is given explicitly as

∂α
rq
k (θ, xT)

∂θ
= (

1 − 2Pe,k
)

pN

⎛
⎝τk − gk μh,k θ√

σ 2
eq,k(θ)

⎞
⎠

×
(
τk g2

k σ
2
h,kθ + gk μh,k σ

2
w,k

)
[
σeq,k(θ)

]3/2 . (39)

Evaluating the derivative of the log-pdf in (38) at θ = θ0
(corresponding to the null hypothesis H0), leads to

∂ log P
(

b̂; θ, xT

)
∂θ

∣∣∣∣∣∣
θ=θ0

=
K∑

k=1

∂α
rq
k (θ, xT)

∂θ

∣∣∣∣∣
θ=θ0

(
b̂k − α

rq
0,k

)

α
rq
0,k

[
1 − α

rq
0,k

] (40)

and, in turn

∂α
rq
k (θ, xT)

∂θ

∣∣∣∣∣
θ=θ0

= (1 − 2Pe,k
)

pN

⎛
⎝ τk√

σ 2
w,k

⎞
⎠gk μh,k

σw,k
.

(41)

Then, exploiting the appropriate substitutions, we
obtain

∂ log P
(

b̂; θ, xT

)
∂θ

∣∣∣∣∣∣
θ=θ0

=
K∑

k=1

⎧⎨
⎩
(

b̂k−αrq
0,k

)

α
rq
0,k

[
1−αrq

0,k

] (1−2Pe,k
)

pN

⎛
⎝ τk√

σ 2
w,k

⎞
⎠gk μh,k

σw,k

⎫⎬
⎭.

(42)

By defining the auxiliary quantity

�
rq
k �

(
1 − 2Pe,k

)
α

rq
0,k

[
1 − α

rq
0,k

] μh,k

σw,k
pN
(
τk /

√
σ 2

w,k

)
(43)

we obtain the final expression

∂ log P
(

b̂; θ, xT

)
∂θ

∣∣∣∣∣∣
θ=θ0

=
K∑

k=1

(
b̂k − α

rq
0,k

)
�

rq
k gk. (44)

Differently, referring to the xT -conditional score func-
tion needed for G-LOD evaluation, we observe that
log P(d̂; Pθ , xT) admits a similar additive form as (37).
Accordingly, ∂ log P(d̂; Pθ , xT) / ∂Pθ can be rewritten simi-
larly as the last line of (38) if we replace b̂k, αrq

k (θ, xT) and
∂α

rq
k (θ, xT)/∂θ with d̂k, αsq

k (Pθ , xT) and ∂αsq
k (Pθ , xT) / ∂Pθ ,

respectively.
Based on the bit probability model in (6), the derivative

of αsq
k (Pθ , xT) with respect to Pθ is more involved and given

explicitly as in (45), shown at the bottom of the page.
Evaluating the derivative of the log-pdf in (38) at Pθ = Pθ0

(corresponding to the null hypothesis H0), leads to

∂ log P
(

d̂; Pθ , xT

)
∂Pθ
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Pθ=Pθ0

=
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k=1
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α
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[
1 − α

sq
0,k

] . (46)

The above limit is an undetermined form of the type (0/0) and
its explicit solution (obtained by leveraging limx→0 [exp(x)−
1]/x = 1) is

∂α
sq
k (Pθ , xT)

∂Pθ
= (
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(45)
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∂ log P
(

d̂; Pθ , xT

)
∂Pθ
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By exploiting the definition

�
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√
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(48)

we obtain the final expression

∂ log P
(

d̂; Pθ , xT

)
∂Pθ
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Pθ=Pθ0

=
K∑

k=1

(
d̂k − α

sq
0,k

)
�

sq
k g2

k . (49)

This concludes the proof.

APPENDIX B
DERIVATION OF THE FISHER INFORMATION

In this Appendix, we derive the xT -conditional FI expres-
sions needed for G-Rao and G-LOD tests, respectively.

In detail, exploiting (conditional) independence of the bits
received from different sensors (this applies to both RQ and
SQ), we express both these quantities as

Irq(θ, xT) =
K∑

k=1

Irq
k (θ, xT) (50)

Isq(Pθ , xT) =
K∑

k=1

Ik(Pθ , xT) (51)

where we have denoted with Irq
k (θ, xT) [resp. Isq

k (Pθ , xT)]
the contribution of kth sensor to the FI, that is,
Irq
k (θ, xT , ) = E{(∂ ln [P(b̂k|xT , θ)]/∂θ)2} (resp. Isq

k (Pθ , xT) =
E{(∂ ln [P(d̂k|xT ,Pθ )]/∂Pθ )2}). Then, the substitution θ → θ0
in Irq(θ, xT) [and exploiting (44)] provides

Irq(θ0, xT) =
K∑

k=1

E

{[(
b̂k − α

rq
0,k

)]2
} (
�

rq
k

)2
g2

k (52)

=
K∑

k=1

α
rq
0,k

[
1 − α

rq
0,k

] (
�

rq
k

)2
g2

k (53)

and a similar expression holds for G-LOD case [exploiting
(49)], that is

Isq(Pθ0 , xT
) =

K∑
k=1

E

{[(
d̂k − α

sq
0,k
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} (
�
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g4
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By using the definitions ψ rq
0,k � α

sq
0,k(1 − α

sq
0,k)(�

rq
k )

2 and
ψ

sq
0,k � α

sq
0,k(1 − α

sq
0,k)(�

sq
k )

2, in conjunction with (50), we
obtain the (conditional) final FI results in (16) and (20),
respectively.
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